Примеры матричных игр в чистой и смешанной стратегиях Уменьшение порядка платёжной матрицы. Факторы, влияющие на процесс принятия управленческих решений. Платежная матрица. Дерево решений

Для принятия оптимальных решений применяются следующие методы:

− платежная матрица;

− дерево решений;

− методы прогнозирования.

Платежная матрица . Суть каждого принимаемого руководством решения – выбор наилучшей из нескольких альтернатив по конкретным установленным заранее критериям. Платежная матрица – это один из методов статистической теории решений, метод, который может оказать помощь руководителю в выборе одного из нескольких вариантов. Он особенно полезен, когда руководитель должен установить, какая стратегия в наибольшей мере будет способствовать достижению целей.

Платеж представляет собой денежное вознаграждение или полезность, являющиеся следствием конкретной стратегии в сочетании с конкретными обстоятельствами. Если платежи представить в форме таблицы (или матрицы), мы получаем платежную матрицу. Слова «в сочетании с конкретными обстоятельствами» очень важны, чтобы понять, когда можно использовать платежную матрицу и оценить, когда решение, принятое на ее основе, скорее всего, будет надежным. В самом общем виде матрица означает, что платеж зависит от определенных событий, которые фактически совершаются. Если такое событие или состояние природы не случается на деле, платеж неизбежно будет иным. В целом платежная матрица полезна, когда:

1) имеется разумно ограниченное число альтернатив или вариантов стратегии для выбора между ними;

2) то, что может случиться, с полной определенностью не известно;

3) результаты принятого решения зависят от того, какая именно выбрана альтернатива и какие события в действительности имеют место.

Кроме того, руководитель должен располагать возможностью объективной оценки вероятности релевантных событий и расчета ожидаемого значения такой вероятности. Руководитель редко имеет полную определенность, но также редко он действует в условиях полной неопределенности. Почти во всех случаях принятия решений руководителю приходится оценивать вероятность или возможность события. Вероятность можно определить объективно, как поступает игрок в рулетку, ставя на нечетные номера. Выбор ее значения может опираться на прошлые тенденции или субъективную оценку руководителя, который исходит из собственного опыта действий в подобных ситуациях.

Многие допущения, из которых исходит руководитель, относятся к условиям в будущем, над которыми руководитель почти не имеет никакого контроля. Однако такого рода допущения необходимы для многих операций планирования. Ясно, что чем лучше руководитель сможет предсказать внешние и внутренние условия применительно к будущему, тем выше шансы на составление осуществимых планов.


Используя дерево реш ений, руководитель может рассчитать результат каждой альтернативы и выбрать наилучшую последовательность действий. Результат альтернативы рассчитывается путем умножения ожидаемого результата на вероятность и последующим суммированием таких же произведений, находящихся правее на дереве решений.

Дерево решений – это схематическое представление проблемы принятия решений. Как и платежная матрица, дерево решений дает руководителю возможность учесть различные направления действий, соотнести с ними финансовые результаты, скорректировать их в соответствии с приписанной им вероятностью, а затем сравнить альтернативы. Концепция ожидаемого значения является неотъемлемой частью метода дерева решений (рис.1).

Рисунок - Дерево принятия решений

Дерево решений можно строить под сложные ситуации, когда результаты одного решения влияют на последующие решения. Таким образом, дерево решений – это полезный инструмент для принятия последовательных решений.

Принятие решений как результат управленческой деятельности. Уровни принятия решений в организации

Принятие решений является результатом управленческой деятельности менеджмента предприятия. Принятие решения отличается в зависимости от уровня в организации. Имеет место иерархия управления. Редко осуществляется одноступенчатая иерархия в управлении:

Обычно существует иерархия (пирамида) управления с дифференциацией по рангу командной власти, компетенции принятия решений, авторитету, положению.

Иерархия управления - инструмент для реализации целей фирмы и гарантия сохранения системы. Чем выше иерархический уровень, тем больше объем и комплексность выполняемых функций, ответственность, доля стратегических решений и доступ к информации. Одновременно растут и требования к квалификации, и личная свобода в управлении. Чем ниже уровень - тем больше простота решений, доля оперативных видов деятельности (рис. 2).

Рисунок 2- Иерархия менеджмента

Важность выработки и принятия рационального решения проблемы несомненны. Но это лишь первый, хотя и определяющий шаг менеджера. Решение еще необходимо выполнить. Реализация решения осуществляется с большей долей вероятности, быстрее и с инициативой, тогда, когда в процессе его выработки и принятия участвовали исполнители, тем более, если они вносили свои предложения и отбирали наиболее приемлемый вариант.

Ход реализации управленческого решения начинается с планирования или составления графика работ по реализации. В плане реализации решения проблемы предусматриваются конкретные исполнители, ответственные за отдельные участки или объемы работ, сроки и способы достижения желаемых результатов, необходимые материальные и финансовые средства. Планом должен быть предусмотрен также контроль за ходом выполнения решения и итоговый контроль после снятия проблемы.

К методам решения проблем следует отнести , прежде всего, практическую целесообразность всего комплекса работ. Они должны быть экономичными, без лишних расходов, чтобы доход от полученных результатов решения проблемы превосходил сделанные затраты. Методы решения проблем должны быть надежными, безошибочными и точными.

В ходе реализации решения важно установить обратную связь между исполнителями и руководителем, ответственным за решение проблемы.

В целом процесс принятия и реализации решения можно проследить следующим образом:

1) принятие решения;

2) сообщение о решении;

3) реализация решения;

4) установление обратной связи;

5) оценка результатов.

В ходе реализации решения иногда возникают ситуации, меняющие первоначальные планы. Тогда необходима корректировка действий, а иногда и отмена устаревших распоряжений, если обстоятельства изменились коренным образом. Используя обратную связь, руководитель может быстро реагировать на произошедшие изменения и принять иные, соответствующие обстановке решения.

В практической работе менеджеров бывают обстоятельства, когда они вынуждены принимать нестандартные решения. Правда, эти случаи редки, и менеджеров, идущих на риск, немного. Успех дела здесь может быть достигнут лишь благодаря огромному опыту, знаниям и интуиции руководителя. Решение нестандартных проблем сопряжено с большой, напряженной и сложной работой всех участников, а также с постоянными поправками, координацией, контролем. Здесь присутствует риск потерять многое, если не все. Но в случае удачного исхода дела и положительного нестандартного решения результат превосходит всякие ожидания.

Нестандартные решения часто вызывают возражения, а иногда и яростное сопротивление консервативно настроенных специалистов. Ведь ими проведен анализ проблемы, изучены и отобраны альтернативы, построены математические модели и т.д. Но опытный менеджер может настоять на своем и убедить оппонентов принять именно нестандартное решение. И в конечном итоге он оказывается прав, конечно, если все его доводы и предложения не были авантюрой.

Процедура процесса управления тесно связаны со спецификой предприятия и основными сферами его деятельности (общее управление, финансовое управление, производство, НИОКР, маркетинг).

Общее управление предприятия состоит в его структуризации, организации деятельности, планировании, управлении персоналом, контроле, учете и анализе результатов деятельности, что подробно будет рассмотрено в дальнейшем.

В сфере телекоммуникаций при управлении процессом оказания услуг решаются задачи экономики производства (издержки, цены). К задачам планирования процесса оказания услуг связи относят:

Выбор технологического процесса;

Планирование программы оказания услуг;

Планирование последовательности процесса оказания услуг;

Формирование производственных систем (систем оборудования);

Организация материально-технического снабжения процесса оказания услуг связи.

Реализация функций в области маркетинга включает:

Организацию сбора и обработки маркетинговой информации;

Выбор целевых рынков и их сегментирование;

Применение маркетинговых решений по услуге;

Выбор и взаимодействие с каналами реализации услуг;

Продвижение услуги;

Выбор и реализация ценовой политики;

Планирование и анализ эффективности маркетинговой деятельности.

Финансовое управление предприятием сферы телекоммуникаций включает:

Приобретение финансовых средств;

Использование финансовых средств;

Управление ликвидностью;

Структурирование капитала и имущества;

Управление платежными средствами и проведение платежного оборота;

Финансовое планирование и финансовый контроль.

Таким образом, конкретные функции управления фирмой можно рассматривать как системные компоненты ее менеджмента.

Основные этапы процесса разработки, принятия и реализации управленческих решений. Модели и методы принятия решений

В сфере телекоммуникаций на предприятиях протекают процессы разработки, принятия и реализации управленческих решений, которые имеют важное значение.

Многие исследователи полагают, что оптимальной деятельности предприятия способствуют принятые и реализованные рациональные решения. В основе разработки рационального решения проблемы лежит объективный и многосторонний анализ условий, в которых предприятие действует в каждый период времени, а также тенденции, которые будут иметь место в дальнейшем.

Этот анализ протекает по этапам от начала возникновения проблемы до полного устранения и получения позитивного результата.

Первый этап содержит анализ ситуации, в рамках которой обнаружились симптомы или признаки возникающей проблемы. Если данный процесс удалось обнаружить на ранних стадиях, то возможностей предотвращения негативного развития событий значительно больше. Работа на данном этапе ведется в так называемом проблемном поле, где выявляются и формулируются возникшие перед предприятием проблемы.

На втором этапе проводится анализ самой проблемы. Затягивать его нельзя, так как может быть упущено драгоценное время для решения проблемы. Однако оставлять неясности в этом анализе недопустимо, ибо могут «всплыть» новые причины, породившие проблему. Всегда необходимо разобраться в проблеме до конца и точно ее сформулировать.

Третий этап – выявление факторов, ограничивающих принятие рационального решения данной проблемы. Среди этих факторов, могут быть как внешние, так и внутренние. Если внешнее окружение оказывает несущественное влияние на выработку и реализацию рационального решения, то рассматривают внутренние возможности. Это может касаться самих руководителей, принимающих решения. В зависимости от личности руководителя решения могут носить различный характер. Часто менеджер уравновешенный, спокойный, критически настроенный к себе принимает осторожные решения. Недоверчивые, скептически настроенные люди склонны принимать инертные решения, быстрые, подвижные – холерики – могут принять импульсивные и весьма рискованные решения.

К ограничениям внутреннего порядка следует отнести ограниченность средств для решения проблемы, недостающее число специалистов необходимой квалификации, этические соображения и т.д. Кроме этого, менеджеры могут выработать и реализовать рациональное решение лишь тогда, когда высшее руководство предоставит им соответствующие полномочия.

На четвертом этапе выработки рационального решения осуществляются определение, оценка и выбор альтернативы из имеющихся вариантов. Сначала формулируются все возможные в данном случае альтернативы и из них выбираются наиболее реальные. Здесь главное – найти оптимальный вариант, позволяющий разрешить проблему. Научный подход к выбору альтернативы предполагает наличие некоего стандарта или критериев, с помощью которых устанавливается приемлемость данного варианта решения проблемы для ее разработчика и исполнителей.

В случае, если проблема верно сформулирована, оценена, альтернативные варианты отброшены, менеджер окончательно приходит к выводу, что следует остановить свой выбор на данном рациональном варианте решения. Такой выбор не обязательно преследует максимум полезности и даже не оптимальное достижение результата. Как правило, менеджеры ориентируются на решение, удовлетворяющее все заинтересованные в разрешении этой проблемы стороны.

Пятый этап – это согласование решения с исполнителями и всеми заинтересованными сотрудниками. Оно осуществляется путем визирования документа (приказа), предписывающего исполнение решения данной проблемы.

И, наконец, заключительный шестой этап – это утверждение решения высшим руководителем предприятия. Такая процедура является обязательной, если для реализации решения требуется израсходовать материальные, денежные и людские ресурсы и резервы. Тот, кто несет ответственность за эти средства, тот и утверждает решение. После этого начинается реализация рационального решения.

6. Проектные методы в управлении

В конце 50-х годов в США для осуществления программы исследовательских и конструкторских работ по созданию ракеты “Поларис” был использован метод планирования и управления, основанный на идее определения, оценки вероятных сроков и контроля так называемого “критического пути” всего комплекса работ. Результаты превзошли все ожидания: во-первых, заметно уменьшилось число сбоев в работе из-за несогласованности используемых ресурсов, резко сократилась общая продолжительность выполнения всего комплекса работ, получен огромный эффект из-за снижения суммарной потребности в ресурсах и, соответственно, уменьшения общей стоимости программы.

Вскоре после того, как результаты выполнения программы “Поларис” стали достоянием общественности, весь мир заговорил о методе PERT (Project Evaluation and Review Technique) как о новом подходе к организации управления.

За прошедшее с тех пор время метод “критического пути” не только получил широкое применение в повседневной практике управления, но и обусловил появление специальной научно-прикладной дисциплины – управление проектами. В центре внимания этой дисциплины находятся вопросы планирования, организации, контроля и регулирования хода выполнения проектов, организации материально-технического, финансового и кадрового обеспечения проектов, оценки инвестиционной привлекательности различных вариантов реализации проектов.

В современной деловой среде актуальность проектного управления как метода организации и управления производством значительно возросла. Это обусловлено объективными тенденциями в глобальной реструктуризации бизнеса. Принцип концентрации производственно-экономического потенциала уступил место принципу сосредоточения на развитии собственного потенциала организации. Крупные производственно-хозяйственные комплексы конгломеративного типа быстро замещаются гибкими сетевыми структурами, среди участников которых доминирует принцип предпочтения использования внешних ресурсов внутренним (outsourcing). Поэтому производственная деятельность всё больше превращается в комплекс работ со сложной структурой используемых ресурсов, сложной организационной топологией, сильной функциональной зависимостью от времени и огромной стоимостью.

Объект проектного управления. Термин проект, как известно, происходит от латинского слова projectus, что в буквальном переводе означает “брошенный вперед”. Таким образом, сразу становится ясно, объект управления, который можно представить в виде проекта, отличает возможность его перспективного развертывания, т.е. возможность предусмотреть его состояния в будущем. Хотя различные официальные источники трактуют понятие проекта по-разному, во всех определениях четко просматриваются особенности проекта как объекта управления, обусловленные комплексностью задач и работ, четкой ориентацией этого комплекса на достижение определенных целей и ограничениями по времени, бюджету, материальным и трудовым ресурсам.

Однако, любая деятельность, в том числе и та, которую никто не собирается называть проектом, выполняется в течение определенного периода времени и связана с затратами определенных финансовых, материальных и трудовых ресурсов. Кроме того, любая разумная деятельность, как правило, целесообразна, т.е. направлена на достижение определенного результата. И, тем не менее, в одних случаях к управлению деятельностью подходят как к управлению проектом, а в других случаях – нет.

Деятельность как объект управления рассматривается в виде проекта тогда, когда она объективно имеет комплексных характер и для ее эффективного управления важное значение имеет:

Анализ внутренней структуры всего комплекса работ (операций, процедур и т.п.);

Переходы от одной работы к другой определяют основное содержание всей деятельности;

Достижение целей деятельности связано с последовательно-параллельным выполнением всех элементов этой деятельности;

Ограничения по времени, финансовым, материальным и трудовым ресурсам имеют особое значение в процессе выполнения комплекса работ;

продолжительность и стоимость деятельности явно зависит от организации всего комплекса работ.

Поэтому, объектом проектного управления принято считать особым образом организованный комплекс работ, направленный на решение определенной задачи или достижение определенной цели, выполнение которого ограничено во времени, а также связано с потреблением конкретных финансовых, материальных и трудовых ресурсов. При этом под “работой” понимается элементарная, неделимая часть данного комплекса действий.

Рассмотрим конечную игру, в которой игрок («мы») имеет стратегий, а игрок В («противник») - стратегий. Такая игра называется игрой Будем обозначать наши стратегии стратегии противника - Предположим, что каждая сторона выбрала определенную стратегию: мы выбрали противник - Если игра состоит только из личных ходов, то выбор стратегий однозначно определяет исход игры - наш выигрыш (положительный или отрицательный); обозначим его

Если игра содержит кроме личных случайные ходы, то выигрыш при паре стратегий есть величина случайная, зависящая от исходов всех случайных ходов. В этом случае естественной оценкой ожидаемого выигрыша является математическое ожидание случайного выигрыша. Мы будем обозначать одним и тем же знаком как сам выигрыш (в игре без случайных ходов), так и его математическое ожидание (в игре со случайными ходами).

Предположим, что нам известны значения при каждой паре стратегий. Эти значения можно записать в виде прямоугольной таблицы (матрицы), строки которой соответствуют нашим стратегиям а столбцы - стратегиям противника

Такая таблица называется платежной матрицей или просто матрицей игры.

Заметим, что построение платежной матрицы, особенно для игр с большим количеством стратегий, может само по себе представлять весьма непростую задачу.

Например, для шахматной игры число возможных стратегий так велико, что построение платежной матрицы (даже с привлечением вычислительных машин) является пока практически неосуществимым. Однако в принципе любая конечная игра может быть приведена к матричной форме.

Рассмотрим несколько элементарных примеров игр и построим для них платежные матрицы.

Пример 1. Игра «поиск»,

Имеется два игрока А и В; игрок А прячется, а В его ищет. В распоряжении А имеется два убежища (I и II), любое из которых он может выбрать по своему усмотрению. Условия игры таковы: если В найдет А в том убежище, где А спрятался, то А платит ему штраф 1 руб; если В не найдет А (т. е. будет искать в другом убежище), то он сам должен заплатить А такой же штаф. Требуется построить платежную матрицу.

Решение. Игра состоит всего из двух ходов, оба - личные. У нас (А) две стратегии:

Прятаться в убежище I,

Прятаться в убежище II.

У противника (В) тоже две стратегии:

Искать в убежище I,

Искать в убежище II.

Перед нами игра Ее матрица имеет вид:

На примере Этой игры, как она ни элементарна, можно уяснить себе некоторые важные идеи теории игр.

Предположим сначала, что данная игра выполняется только один раз (играется единственная «партия»). Тогда, очевидно, нет смысла говорить о преимуществах тех или других стратегий - каждый из игроков может с равным основанием принять любую из них. Однако при многократном повторении игры положение меняется.

Действительно, допустим, что мы (игрок А) выбрали какую-то стратегию (скажем, ) и придерживаемся ее. Тогда, уже по результатам первых нескольких партий, противник догадается о нашей стратегии, начнет всегда искать в убежище I и выигрывать. То же будет, если мы выберем стратегию . Нам явно невыгодно придерживаться одной какой-то стратегии; чтобы не оказаться в проигрыше, мы должны чередовать их. Однако, если мы будем чередовать убежища I и II в какой-то определенной последовательности (скажем, через одну партию), противник тоже догадается об этом и ответит наихудшим для нас образом.

Очевидно, надежным способом, гарантирующим нас от верного проигрыша, будет такая организация выбора в каждой партии, когда мы сами его наперед не знаем. Например, можно бросить монету, и, если выпадет герб, выбрать убежище I, а если решка - убежище II.

Печальное положение, в котором оказался игрок А (чтобы не проигрывать, выбирать убежище случайным образом), очевидно, присуще не только ему, но и его противнику В, для которого справедливы все вышеприведенные рассуждения. Оптимальной стратегией каждого оказывается «смешанная» стратегия, в которой две возможные стратегии игрока чередуются случайным образом, с одинаковыми вероятностями.

Таким образом, мы путем интуитивных рассуждений подошли к одному из существенных понятий теории игр - к понятию смешанной стратегии т. е. такой, в которой отдельные «чистые» стретегии чередуются случайным образом с какими-то вероятностями. В данном примере из соображений симметрии ясно, что стратегии должны применяться с одинаковыми вероятностями; в более сложных примерах решение может быть далеко не тривиальным.

Пример 2. Игра «три пальца».

Игроки А и В одновременно и независимо друг от друга показывают один, два или три пальца. Выигрыш или проигрыш решает общее число показанных пальцев. Выигрыш (в рублях) равен этому числу; если оно четное - выигрывает А, а В ему платит; если нечетное - наоборот. Требуется построить платежную матрицу.

Решение. У каждого игрока по три стратегии: показывать один, два или три пальца. Матрица игры 3x3 имеет вид:

Проанализируем ситуацию. Очевидно, на любую нашу стратегию противник может ответить наихудшим для нас образом. Например, если мы выбирем он ответит нам и мы проиграем На стратегию он нам ответит и мы проиграем 5 руб.; на стратегию и мы снова проиграем 5 руб. Очевидно, некоторое преимущество имеет стратегия (при ней проигрыш минимален), но и она для нас явно невыгодна, так как всегда ведет к проигрышу.

Однако попробуем стать на точку зрения второго игрока (В). Его положение тоже не из блестящих. Если он выберет мы ответим ему и он отдаст нам 4 руб; если - мы ответим и снова получим 4 руб; также и на у нас есть ответ приводящий к еще худшему результату: В проиграет 6 руб.

Выходит, игра невыгодна ни тому, ни другому из игроков: каждый из них, выбрав какую-то определенную стратегию, осужден на проигрыш! Это наводит на мысль, что и здесь выход - в применении смешанных стратегий; действительно, так оно и есть, но в данном примере дело обстоит не так просто, как в предыдущем, и чтобы найти оптимальные стратегии сторон, нужно научиться решать игры. В дальнейшем мы вернемся к этому примеру и найдем его решение.

Пример 3. Игра «вооружение и самолет». В нашем распоряжении имеются три вида вооружения: у противника - три вида самолетов: Наша задача - поразить самолет; задача противника - сохранить его непораженным. Наш личный ход - выбор типа вооружения; личный ход противника - выбор самолета для боевых действий. В данной игре имеется еще и случайный ход - применение вооружения. Вооружением самолеты поражаются соответственно с вероятностями 0,5, 0,6, 0,8; вооружением - с вероятностями 0,9, 0,7, 0,8; вооружением вероятностями 0,7, 0,5, 0,6. Построить матрицу игры и проанализировать ситуацию.

В данной матрице элементы величины α i и β j соответственно минимальные значения элементов a ij по строкам и максимальные по столбцам.

Построение платежной матрицы – наиболее трудоемкий этап подготовки принятия решения. Ошибки в платежной матрице не могут быть компенсированы никакими вычислительными методами и приведут к неверному итоговому результату.

Возможен и другой способ задания матрицы игры с природой – в виде матрицы рисков R, или матрицы потерь (упущенных возможностей) . Величина риска – это размер платы за отсутствие информации о состоянии среды. Матрица R может быть построена непосредственно из условий задачи или на основе матрицы выигрышей.

Риском r ij игрока А при использовании им стратегии А i , а игроком В – стратегии В j называют разность между выигрышем, который игрок А получил бы, если бы знал, что игрок В выберет стратегию В j , и выигрышем, который игрок получил бы, не имея этой информации. Зная стратегию игрока В, игрок А выбирает вариант действий, при котором его выигрыш максимален, то есть r ij = β j – a ij , где при заданномj .

Рассмотрим способ построения матрицы рисков на примере (табл. 8.2, 8.3).

Таблица 8.2

Пример платежной матрицы

α i

β j

Согласно выведенным определениям r ij и β j получаем матрицу рисков.

Таблица 8.3

Матрица рисков

Независимо от вида матрицы игры требуется выбрать такую стратегию игрока, которая была бы наиболее выгодной по сравнению с другими.

В условиях неопределенности для определения наилучших решений могут быть использованы следующие критерии:

1. Критерий максимакса (критерий крайнего оптимизма) . Позволяет определить стратегию, максимизирующую выигрыш игрока (М ):

.

Очевидно, что для матрицы выигрышей, представленной в табл. 8.2 , наилучшим решением будет А 1 , при котором достигается максимальный выигрыш – 9.

Следует отметить, что ситуации, требующие применения такого критерия, в экономике в общем нередки, и пользуются им не только безоглядные оптимисты, но и игроки, поставленные в безвыходное положение, когда они вынуждены руководствоваться принципом "или пан, или пропал".

2. Критерий Вальда (критерий максимина) . Данный критерий позволяет максимизировать минимально возможный выигрыш:

.

Для стратегии А 1
;

Для стратегии А 2
;

Для стратегии А 3
.

Соответственно W = 3, что соответствует стратегии А 2 игрока А.

Особенность максиминного критерия в том, что он ориентирует на выбор наиболее безопасного варианта. Это своего рода критерий для осторожного человека. Им главным образом следует пользоваться в тех случаях, когда действия направлены на удовлетворение жизненно важных потребностей и необходимо обеспечить успех при любых возможных условиях. Он имеет в качестве недостатка неубедительность использования в разных условиях окружающей обстановки. Однако в тех случаях, когда действия направлены на удовлетворение жизненно важных потребностей и необходимо обеспечить успех при любых возможных условиях, максиминный критерий в наибольшей степени соответствует существу задачи. Так или иначе, выбор такой стратегии определяется отношением игрока к риску.

3. Критерий Сэвиджа (критерий минимакса) . Позволяет минимизировать максимальные потери. Выбор стратегии аналогичен выбору стратегии по принципу Вальда с тем отличием, что игрок руководствуется не матрицей выигрыша, а матрицей рисков:

Для матрицы рисков, представленной в табл. 8.3,

Для стратегии А 1
;

Для стратегии А 2
;

Для стратегии А 3
.

Соответственно, S = 4, что соответствует стратегии А 1 игрока А.

Слабость данного критерия заключается в допущении, что результаты выбираются разумным противником, интересы которого прямо противоположны нашим собственным, то есть мы полагаем следующее: если применяемые правила принятия решений позволяют противнику извлечь какое-либо преимущество, то он обязательно это сделает. Однако если исключить вполне определенные условия конкурентной борьбы, то столь пессимистические допущения нельзя оправдать. Действительно, ведь результаты могут выбираться нерациональным "противником", а цели "противника" не обязательно полностью противоречат нашим собственным.

    Критерий Гурвица (критерий обобщенного максимина или критерий пессимизма – оптимизма) . Был предложен с учетом недостатков указанных выше критериев. При выборе решения он рекомендует руководствоваться неким средним результатом, характеризующим состояние между крайним пессимизмом и безудержным оптимизмом. Критерий имеет следующий вид:

,

где р – коэффициент пессимизма (
).

При р = 0 критерий Гурвица совпадает с максимаксным критерием, а при р = 1 – с критерием Вальда.

Покажем процедуру применения данного критерия для платежной матрицы при р = 0,4:

Для стратегии А 1
;

Для стратегии А 2
;

Для стратегии А 3 .

Тогда Н А = 6, что соответствует стратегии А 2 (для сравнения, при р = 0,3, оптимальной будет являться стратегия А 1).

Применительно к матрице рисков критерий Гурвица выглядит следующим образом:

,

    Критерий Лапласа . В его основу положено предположение, что поскольку о вероятностях получения того или иного результата ничего неизвестно, то можно полагать их равновероятными. Поэтому оценка каждой i -й стратегии производится как среднее арифметическое в i -й строке (L):

Для представленной выше платежной матрицы:

Для стратегии А 1
;

Для стратегии А 2
;

Для стратегии А 3
.

Соответственно, L = 4,75, что соответствует стратегии А 1 .

В случае, когда по принятому критерию рекомендуется к использованию несколько стратегий, выбор между ними может делаться по дополнительному критерию. Например, в расчет могут приниматься средние квадратичные отклонения от средних выигрышей при каждой стратегии.

Попытка сформулировать критерий оценки возможных решений в условиях неопределенности отражает стремление сделать более наглядными преимущества и недостатки каждого варианта действий в различной обстановке.

Как видно из представленных выше расчетов, использование различных критериев при решении одной задачи, как правило, приводит к получению неодинаковых результатов. Существует два подхода к выбору критериев для решения задач в условиях неопределенности. Первый из них – это разработка новых критериев или требований для выбора критерия принятия решения. Второй путь заключается в использовании любой, пусть самой скудной, информации о вероятностях реализации различных условий внешней среды (различных результатов, получаемых при реализации той или иной стратегии) или в проведении экспериментов с целью получения оценок этих вероятностей. Тем самым неопределенная задача становится вероятностной.

Оба пути трудоемки и, как правило, трудновыполнимы на практике, однако предпочтительнее все же второй путь. Первый путь приводит к поискам новых критериев для выбора лучшего из числа известных, затем – к поискам критериев для выбора из числа рассматриваемых и т. д. Иными словами, не существует критерия принятия решения, не основанного на оценках вероятностей, который удовлетворял бы определенным обоснованным требованиям "хорошего" критерия.

Ни один из предложенных методов выбора решений не является универсальным, способным удовлетворить любого ЛПР. Люди по-разному относятся к элементам риска, содержащимся в каждом решении. Один склонен рисковать в надежде добиться большего успеха, другой предпочитает всегда действовать осторожно. Разумеется, размеры риска, допускаемые в решении, зависят не только от характера ЛПР, но и от содержания целей.

Ученые считают, что правило минимаксных (осторожных) решений интуитивно применяется большинством руководителей в повседневной практике, в то время как стремление к максимуму ожидаемых результатов могло бы быть более эффективным для организации. Так, многие руководители предпочитают иметь на складах предприятия некоторые излишки запасов материалов, чем подвергаться риску возникновения простоев в производстве из-за перебоев в поставках.

В платежной матрице игры существует элемент, являющийся одновременно минимальным в своей строке и максимальным в своем столбце. Такой элемент называют седловой точкой. Седловая точка в игре имеет место тогда, когда наблюдается равенство α i = β j . При этом значение α i = β j V называют чистой ценой игры. В этом случае решение игры (совокупность оптимальных стратегий игроков) обладает следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии. Поэтому для игры с седловой точкой минимаксные стратегии обладают устойчивостью.

В целом теория игр может рассматриваться как своеобразный методический инструмент для анализа ситуаций, характеризующихся конфликтом сторон и неопределенностью.

Однако в связи с отмеченными выше существенными ограничениями, лежащими в основе формализации игры, далеко не все реальные ситуации допускают такую формализацию, а полученные выводы в реальных ситуациях выглядят зачастую банальными (например, направить все ресурсы на наиболее эффективные операции) и могут требовать корректировки с позиций здравого смысла, диверсификации видов деятельности и т.д. Это снижает практическую эффективность игрового подхода в реальной деятельности.

ПРАКТИЧЕСКАЯ РАБОТА №3

Модели теории игр

Понятие об игровых моделях

Теория игр занимается разработкой различного рода рекомендаций по принятию решений в условиях конфликтной ситуации. Формируя конфликтные ситуации математически, их можно представить как игру двух, трёх и более игроков, каждый из которых преследует цель максимизации своего выигрыша за счет другого игрока. Математическая модель конфликтной ситуации называется игрой , стороны, участвующие в конфликте, – игроками , а исход конфликта – выигрышем . Для каждой формализованной игры вводятся правила , т.е. система условий, определяющая:

1. варианты действий игроков;

2. объем информации каждого игрока о поведении партнеров;

3. выигрыш, к которому приводит каждая совокупность действий.

Как правило, выигрыш может быть задан количественно (например, проигрыш – 0, выигрыш – 1, ничья – ½). Игра называется парной , если в ней участвуют два игрока, и множественной , если число игроков больше двух. Игра называется игрой с нулевой суммой , если выигрыш одного из игроков равен проигрышу другого. Выбор и осуществление одного из предусмотренных правилами действий называется ходом игрока. Ходы могут быть личными и случайными. Личный ход – сознательный выбор игроком одного из возможных действий (ход в шахматной игре), случайный ход – случайно выбранное действие (выбор карты из перетасованной колоды).

Стратегией игрока называется совокупность правил, определяющих выбор его действия при при каждом личном ходе в зависимости от сложившейся ситуации. Игра называется конечной , если у игрока имеется конечное число стратегий, и бесконечной – в противном случае.

Для того, чтобы решить игру, или найти решение игры , следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получить максимальный выигрыш , когда второй придерживается своей стратегии. В то же время второй игрок должен иметь минимальный проигрыш , если первый придерживается своей стратегии. Такие стратегии называются оптимальными. Целью теории игр является определение оптимальной стратегии для каждого игрока . При выборе оптимальной стратегии естественно предполагать, что оба игрока ведут себя разумно с точки зрения своих интересов.

Платежная матрица. Нижняя и верхняя цена игры

Рассмотрим парную конечную игру. Пусть игрок А располагает m личными стратегиями, которые обозначим А 1 , А 2 ,…,А m . Пусть у игрока B имеется n личных стратегий, обозначим их B 1 , B 2 ,…,B n . Говорят, что игра имеет размерность m ´ n . В результате выбора игроками любой пары стратегий А i и B j однозначно определяется исход игры, т.е. выигрыш a ij игрока А (положительный или отрицательный) и проигрыш (-a ij ) игрока В . Матрица Р=(a ij) , элементами которой являются выигрыши, соответствующие стратегиям А i и B j , называется платежной матрицей или матрицей игры .

B j A i B 1 B 2 B n
A 1 a 11 a 12 a 1n
A 2 a 21 a 22 a 2n
A m a m1 a m 2 a mn

Пример – игра «Поиск»

Игрок А может спрятаться в убежище 1 – обозначим эту стратегию за А 1 или в убежище 2 – стратегия А 2 . Игрок В может искать первого игрока в убежище 1 –стратегия В 1 , либо в убежище 2 – стратегия В 2 . Если игрок А находится в убежище 1 и его там обнаруживает игрок В , т.е. осуществляется пара стратегий (А 1 ,В 1) , то игрок А платит штраф, т.е. a 11 =–1. Аналогично получаем a 22 =–1. Очевидно, что стратегии (А 1 ,В 2) и (А 2 ,В 1) дают игроку А выигрыш 1, поэтому a 12 =a 21 =1. Таким образом, получаем платежную матрицу

Рассмотрим игру m ´ n с матрицей Р=(a ij) и определим наилучшую среди стратегий игрока А . Выбирая стратегию А i , игрок А должен рассчитывать, что игрок В ответит на нее той из стратегий В j , для которой выигрыш для игрока А минимален (игрок В стремится «навредить» игроку А ).

Обозначим через a i наименьший выигрыш игрока А при выборе им стратегии А i для всех возможных стратегий игрока В (наименьшее число в i -й строке платежной матрицы), т.е. .

Среди всех чисел a i выберем наибольшее: . Назовем a нижней ценой игры , или максимальным выигрышем (максимином ). Это гарантированный выигрыш игрока А при любой стратегии игрока В . Следовательно, .

Стратегия, соответствующая максимину, называется максиминной стратегией . Игрок В заинтересован в том, чтобы уменьшить выигрыш игрока А ; выбирая стратегию B j , он учитывает максимально возможный при этом выигрыш для A. Обозначим .

Среди всех чисел выберем наименьшее иназовем b верхней ценой игры , или минимаксным выигрышем (минимаксом ). Это гарантированный проигрыш игрока В при любой стратегии игрока А . Следовательно, .

Стратегия, соответствующая минимаксу, называется минимаксной стратегией . Принцип, диктующий игрокам выбор наиболее осторожных минимаксной и максиминной стратегий, называется принципом минимакса .

Статистические игры

Во многих задачах, приводящихся к игровым, неопределенность вызвана отсутствием информации об условиях, в которых осуществляется действие. Эти условия зависят не от сознательных действий другого игрока, а от объективной действительности, которую принято называть «природой». Такие игры называют играми с природой (статистическими играми).

Задача

После нескольких лет эксплуатации промышленное оборудование оказывается в одном из следующих состояний: В 1 – оборудование может использоваться в очередном году после профилактического ремонта; В 2 – для безаварийной работы оборудования в дальнейшем следует заменить отдельные его детали и узлы; В 3 – оборудование требует капитального ремонта или замены.

В зависимости от сложившейся ситуации В 1 ,В 2 ,В 3 руководство предприятия может принять такие решения: А 1 – отремонтировать оборудование силами заводских специалистов, что требует соответствующих затрат а 1 =6, а 2 =10, а 3 =15 ден.ед; А 2 – вызвать специальную бригаду ремонтников, расходы в этом случае составят b 1 =15, b 2 =9, b 3 =18 ден.ед; А 3 – заменить оборудование новым, реализовав устаревшее оборудование по его остаточной стоимости. Совокупные затраты в результаты этого мероприятия будут равны соответственно с 1 =13, с 2 =24, с 3 =12 ден.ед.

Задание

1. Придав описанной ситуации игровую схему, выявить ее участников, указать возможные чистые стратегии сторон.

2. Составить платежную матрицу, пояснив смысл элементов a ij матрицы (почему они отрицательные?).

3. Выяснить, какое решение о работе оборудования в предстоящем году целесообразно рекомендовать руководству предприятия, чтобы минимизировать потери при следующих предположениях: а) накопленный на предприятии опыт эксплуатации аналогичного оборудования показывает, что вероятности указанных состояний оборудования равны соответственно q 1 =0,15; q 2 =0,55; q 3 =0,3 (примените критерий Байеса); б) имеющийся опыт свидетельствует о том, что все три возможных состояния оборудования равновероятны (примените критерий Лапласа); в) о вероятности оборудования ничего определенного сказать нельзя (примените критерии Вальда, Сэвиджа, Гурвица). Значение параметра g=0,8 в критерии Гурвица задано.

Решение

1) Описанная ситуация представляет собой статистическую игру.

В качестве статистика выступает руководство предприятия, которое может принять одно из следующих решений: отремонтировать оборудование своими силами (стратегия А 1), вызвать ремонтников (стратегия А 2); заменить оборудование новым (стратегия А 3).

Второй играющей стороной – природой будем считать совокупность факторов, влияющих на состояние оборудования: оборудование может использоваться после профилактического ремонта (состояние В 1); нужно заменить отдельные узлы и детали оборудования (состояние В 2): потребуется капитальный ремонт или замена оборудования (состояние В 3).

2) Составим платежную матрицу игры:

Элемент платежной матрицы а ij показывает затраты руководства предприятия, если при выбранной стратегии А i оборудование окажется в состоянии В j . Элементы платежной матрицы отрицательны, так как при любой выбранной стратегии руководству предприятия придется нести расходы.

а) накопленный на предприятии опыт эксплуатации аналогично оборудования показывает, что вероятности состояний оборудования равны q 1 =0,15; q 2 =0,55; q 3 =0,3.

Платежную матрицу представим в виде:

Стратегии статистика, A i Состояния природы B j
B 1 B 2 B 3
A 1 -6 -10 -15 -10,9
A 2 -15 -9 -18 -12,6
A 3 -13 -24 -12 -18,75
q j 0,15 0,55 0,3

где , (i=1,3)

По критерию Байеса за оптимальную принимается та чистая стратегия А i , при которой максимизируется средний выигрыш статистика, т.е. обеспечивается =max .

Оптимальной стратегией по Байесу является стратегия А 1 .

б) имеющийся опыт свидетельствует о том, что все три возможных состояния оборудования равновероятны, т.е. = 1/3.

Средние выигрыши равны:

1/3*(-6-10-15) = -31/3 » -10,33;

1/3*(-15-9-18) = -42/3 = -14;

1/3*(-13-24-12) = -49/3 » -16,33.

Оптимальной стратегией по Лапласу является стратегия А 1 .

в) о вероятностях оборудования нельзя сказать ничего определенного.

По критерию Вальда за оптимальную принимается чистая стратегия, которая в наихудших условиях гарантирует максимальный выигрыш, т.е.

.

= max (-15, -18, -24) = -15.

Таким образом, оптимальной является стратегия А 1 .

Построим матрицу рисков , где .

2.2 Примеры матричных игр в чистой и смешанной стратегиях Уменьшение порядка платёжной матрицы

Порядок платёжной матрицы (количество строк и столбцов) может быть уменьшен за счёт исключения доминируемых и дублирующих стратегий.

Стратегия K* называется доминируемой стратегией K**, если при любом варианте поведения противодействующего игрока выполняется соотношение

где и - значения выигрышей при выборе игроком, соответственно, стратегий K* и K**.

В случае, если выполняется соотношение

стратегия K* называется дублирующей по отношению к стратегии K**.

Например, в матрице

B1 B2 B3 B4 B5 B6
A1 1 2 3 4 4 7
A2 7 6 5 4 4 8
A3 1 8 2 3 3 6
A4 8 1 3 2 2 5

Платёжная матрица с доминируемыми и дублирующими стратегиями. Стратегия A1 является доминируемой по отношению к стратегии A2, стратегия B6 является доминируемой по отношению к стратегиям B3, B4 и B5, а стратегия B5 является дублирующей по отношению к стратегии B4. Данные стратегии не будут выбраны игроками, так как являются заведомо проигрышными и удаление этих стратегий из платёжной матрицы не повлияет на определение нижней и верхней цены игры, описанной данной матрицей.

Множество недоминируемых стратегий, полученных после уменьшения размерности платёжной матрицы, называется ещё множеством Парето (по имени итальянского экономиста Вильфредо Парето, занимавшегося исследованиями в данной области)

Пример решения матричной игры в чистых стратегиях

Рассмотрим пример решения матричной игры в чистых стратегиях, в условиях реальной экономики, в ситуации борьбы двух предприятий за рынок продукции региона.

Два предприятия производят продукцию и поставляют её на рынок региона. Они являются единственными поставщиками продукции в регион, поэтому полностью определяют рынок данной продукции в регионе.

Каждое из предприятий имеет возможность производить продукцию с применением одной из трёх различных технологий. В зависимости от качества продукции, произведённой по каждой технологии, предприятия могут установить цену единицы продукции на уровне 10, 6 и 2 денежных единиц соответственно. При этом предприятия имеют различные затраты на производство единицы продукции.

Затраты на единицу продукции, произведенной на предприятиях региона (д.е.).

Технология Цена реализации единицы продукции, д.е. Полная себестоимость единицы продукции, д.е.
Предприятие 1 Предприятие 2
I 10 5 8
II 6 3 4
III 2 1.5 1

В результате маркетингового исследования рынка продукции региона была определена функция спроса на продукцию:

Y = 6 – 0.5×X,


где Y – количество продукции, которое приобретёт население региона (тыс. ед.), а X – средняя цена продукции предприятий, д.е.

Данные о спросе на продукцию в зависимости от цен реализации приведены в таблице.

Спрос на продукцию в регионе, тыс. ед.

Средняя цена реализации 1 ед. продукции, д.е. Спрос на продукцию, тыс. ед.
Предприятие 1 Предприятие 2
10 10 10 1
10 6 8 2
10 2 6 3
6 10 8 2
6 6 6 3
6 2 4 4
2 10 6 3
2 6 4 4
2 2 2 5

Значения долей продукции предприятия 1, приобретенной населением, зависят от соотношения цен на продукцию предприятия 1 и предприятия 2. В результате маркетингового исследования эта зависимость установлена и значения вычислены.

Доля продукции предприятия 1, приобретаемой населением в зависимости от соотношения цен на продукцию (табл. 1.1)

Цена реализации 1 ед. продукции, д.е.
Предприятие 1 Предприятие 2
10 10 0,31
10 6 0,33
10 2 0,18
6 10 0,7
6 6 0,3
6 2 0,2
2 10 0,92
2 6 0,85
2 2 0,72

По условию задачи на рынке региона действует только 2 предприятия. Поэтому долю продукции второго предприятия, приобретённой населением, в зависимости от соотношения цен на продукцию можно определить как единица минус доля первого предприятия.

Стратегиями предприятий в данной задаче являются их решения относительно технологий производства продукции. Эти решения определяют себестоимость и цену реализации единицы продукции. В задаче необходимо определить:

1. Существует ли в данной задаче ситуация равновесия при выборе технологий производства продукции обоими предприятиями?

2. Существуют ли технологии, которые предприятия заведомо не будут выбирать вследствие невыгодности?

3. Сколько продукции будет реализовано в ситуации равновесия? Какое предприятие окажется в выигрышном положении?

Решение задачи

1. Определим экономический смысл коэффициентов выигрышей в платёжной матрице задачи. Каждое предприятие стремится к максимизации прибыли от производства продукции. Но кроме того, в данном случае предприятия ведут борьбу за рынок продукции в регионе. При этом выигрыш одного предприятия означает проигрыш другого. Такая задача может быть сведена к матричной игре с нулевой суммой. При этом коэффициентами выигрышей будут значения разницы прибыли предприятия 1 и предприятия 2 от производства продукции. В случае, если эта разница положительна, выигрывает предприятие 1, а в случае, если она отрицательна – предприятие2.

2. Рассчитаем коэффициенты выигрышей платёжной матрицы. Для этого необходимо определить значения прибыли предприятия 1 и предприятия 2 от производства продукции. Прибыль предприятия в данной задаче зависит:

От цены и себестоимости продукции;

От количества продукции, приобретаемой населением региона;

От доли продукции, приобретённой населением у предприятия.

Таким образом, значения разницы прибыли предприятий, соответствующие коэффициентам платёжной матрицы, необходимо определить по формуле (1):

D = p×(S×R1-S×C1) – (1-p) ×(S×R2-S×C2) (1),

где D – значение разницы прибыли от производства продукции предприятия 1 и предприятия 2;

p - доля продукции предприятия 1, приобретаемой населением региона;

S – количество продукции, приобретаемой населением региона;

R1 и R2 - цены реализации единицы продукции предприятиями 1 и 2;

C1 и C2 – полная себестоимость единицы продукции, произведённой на предприятиях 1 и 2.

Вычислим один из коэффициентов платёжной матрицы.

Пусть, например, предприятие 1 принимает решение о производстве продукции в соответствии с технологией III, а предприятие 2 – в соответствии с технологией II. Тогда цена реализации единицы. продукции для предприятия 1 составит 2 д.е. при себестоимости единицы. продукции 1,5 д.е. Для предприятия 2 цена реализации единицы. продукции составит 6 д.е. при себестоимости 4 д.е. (табл. 1.1).

Количество продукции, которое население региона приобретёт при средней цене 4 д.е., равно 4 тыс. ед. (таблица 1.2). Доля продукции, которую население приобретёт у предприятия 1, составит 0,85, а у предприятия 2 – 0,15 (табл. 1.3). Вычислим коэффициент платёжной матрицы a 32 по формуле (1): a 32 = 0,85×(4×2-4×1,5) – 0,15×(4×6-4×4) = 0,5 тыс. ед.

где i=3 – номер технологии первого предприятия, а j=2 – номер технологии второго предприятия.

Аналогично вычислим все коэффициенты платёжной матрицы. В платёжной матрице стратегии A1 – A3 – представляют собой решения о технологиях производства продукции предприятием 1, стратегии B1 – B3 – решения о технологиях производства продукции предприятием 2, коэффициенты выигрышей – разницу прибыли предприятия 1 и предприятия 2. Платёжная матрица в игре «Борьба двух предприятий за рынок продукции региона».

B1 B2 B3
A1 0,17 0,62 0,24 0.17
A2 3 -1,5 -0,8 -1.5
A3 0,9 0,5 0,4 0.4
3 0.62 0.4

В данной матрице нет ни доминируемых, ни дублирующих стратегий. Это значит, что для обоих предприятий нет заведомо невыгодных технологий производства продукции. Определим минимальные элементы строк матрицы. Для предприятия 1 каждый из этих элементов имеет значение минимально гарантированного выигрыша при выборе соответствующей стратегии. Минимальные элементы матрицы по строкам имеют значения: 0,17, -1,5, 0,4.

Определим максимальные элементы столбцов матрицы. Для предприятия 2 каждый из этих элементов также имеет значение минимально гарантированного выигрыша при выборе соответствующей стратегии. Максимальные элементы матрицы по столбцам имеют значения: 3, 0,62, 0,4.

Нижняя цена игры в матрице равна 0,4. Верхняя цена игры также равна 0,4. Таким образом, нижняя и верхняя цена игры в матрице совпадают. Это значит, что имеется технология производства продукции, которая является оптимальной для обоих предприятий в условиях данной задачи. Эта технология III, которая соответствует стратегиям A3 предприятия 1 и B3 предприятия 2. Стратегии A3 и B3 – чистые оптимальные стратегии в данной задаче.

Значение разницы прибыли предприятия 1 и предприятия 2 при выборе чистой оптимальной стратегии положительно. Это означает, что предприятие 1 выиграет в данной игре. Выигрыш предприятия 1 составит 0,4 тыс. д.е. При этом на рынке будет реализовано 5 тыс. ед. продукции (реализация равна спросу на продукцию, таблица 1.2).. Оба предприятия установят цену за единицу продукции в 2 д.е. При этом для первого предприятия полная себестоимость единицы продукции составит 1,5 д.е., а для второго – 1 д.е (таблица 1.1). Предприятие 1 окажется в выигрыше лишь за счёт высокой доли продукции, которую приобретёт у него население.

Смешанные стратегии в матричных играх

Понятие о матричных играх со смешанным расширением

Исследование в матричных играх начинается с нахождения её чистой цены. Если матричная игра имеет решение в чистых стратегиях, то нахождением чистой цены заканчивается исследование игры. Если же в игре нет решения в чистых стратегиях, то можно найти нижнюю и верхнюю цены этой игры, которые указывают, что игрок 1 не должен надеяться на выигрыш больший, чем верхняя цена игры, и может быть уверен в получении выигрыша не меньше нижней цены игры. Улучшение решений матричных игр следует искать в использовании секретности применения чистых стратегий и возможности многократного повторения игр в виде партии. Этот результат достигается путём применения чистых стратегий случайно, с определённой вероятностью.

Определение. Смешанной стратегией игрока называется полный набор чистых стратегий, применённых в соответствии с установленным распределением вероятностей. Матричная игра, решаемая с использованием смешанных стратегий, называется игрой со смешанным расширением.

Стратегии, применённые с вероятностью, отличной от нуля, называются активными стратегиями.

Доказано, что для всех игр со смешанным расширением существует оптимальная смешанная стратегия, значение выигрыша при выборе которой находится в интервале между нижней и верхней ценой игры:

Vн £ V £ Vв.

При этом условии величина V называется ценой игры.

Кроме того, доказано, что, если один из игроков придерживается своей оптимальной смешанной стратегии, то выигрыш остаётся неизменным и равным цене игры V, независимо от того, каких стратегий придерживается другой игрок, если только он не выходит за пределы своих активных стратегий. Поэтому, для достижения наибольшего гарантированного выигрыша второму игроку также необходимо придерживаться своей оптимальной смешанной стратегии.

Решение матричных игр со смешанным расширением методами линейного программирования

Решение матричной игры со смешанным расширением – это определение оптимальных смешанных стратегий, то есть нахождение таких значений вероятностей выбора чистых стратегий для обоих игроков, при которых они достигают наибольшего выигрыша.

Для матричной игры, платёжная матрица которой показана на рис. 1.1, V н ¹ V в, определим такие значения вероятностей выбора стратегий для игрока 1 (p 1 , p 2 ,…, p m) и для игрока 2 (q 1 , q 2 ,…, q n), при которых игроки достигали бы своего максимально гарантированного выигрыша.

Если один из игроков придерживается своей оптимальной стратегии, то, по условию задачи, его выигрыш не может быть меньше цены игры V. Поэтому данная задача может быть представлена для игроков в виде следующих систем линейных неравенств:

Для первого игрока:


Для второго игрока:

Чтобы определить значение V, разделим обе части каждого из уравнений на V. Величину p i /V обозначим через x i , а q j /V – через y j .

Для игрока 1 получим следующую систему неравенств, из которой найдём значение 1/v:

Для игрока 1 необходимо найти максимальную цену игры (V). Следовательно, значение 1/V должно стремиться к минимуму.

min Z = min 1/V = min (x 1 + x 2 + … + x m)


Для игрока 2 получим следующую систему неравенств, из которой найдём значение 1/v:

Для игрока 2 необходимо найти минимальную цену игры (V). Следовательно, значение 1/V должно стремиться к максимуму.

Целевая функция задачи будет иметь следующий вид:

Все переменные в данных системах линейных неравенств должны быть неотрицательными: x i = p i /V, а y i = q j /V. Значения p i и q j не могут быть отрицательными, так как являются значениями вероятностей выбора стратегий игроков. Поэтому необходимо, чтобы значение цены игры V не было отрицательным. Цена игры вычисляется на основе коэффициентов выигрышей платёжной матрицы. Поэтому, для того, чтобы гарантировать условие неотрицательности для всех переменных, необходимо, чтобы все коэффициенты матрицы были неотрицательными. Этого можно добиться, прибавив перед началом решения задачи к каждому коэффициенту матрицы число K, соответствующее модулю наименьшего отрицательного коэффициента матрицы. Тогда в ходе решения задачи будет определена не цена игры, а величина


Для решения задач линейного программирования используется симплекс-метод. .

В результате решения определяются значения целевых функций (для обоих игроков эти значения совпадают), а также значения переменных x i и y j .

Величина V* определяется по формуле: V* = 1/z

Значения вероятностей выбора стратегий определяются: для игрока 1: P i = x i ×V*: для игрока 2: q i = y i ×V*.

Для определения цены игры V из величины V* необходимо вычесть число K.

Пример решения матричной игры со смешанным расширением

Рассмотрим пример решения матричной игры со смешанным расширением. Платёжную матрицу игры составим на основе исходных данных, заменив лишь значения долей продукции предприятия 1, приобретаемой населением в зависимости от соотношений цен (табл. 2.1).

Таблица 2.1 - Доля продукции предприятия 1, приобретаемой населением в зависимости от соотношения цен на продукцию

Цена реализации 1 ед. продукции, д.е. Доля продукции предприятия 1, купленной населением
Предп. 1 Предп. 2
10 10 0,31
10 6 0,33
10 2 0,18
6 10 0,7
6 6 0,3
6 2 0,2
2 10 0,9
2 6 0,85
2 2 0,69

Применив к исходным данным задачи формулу (1) определения разницы прибыли от производства продукции, получим следующую платёжную матрицу

Платёжная матрица в игре «Борьба двух предприятий за рынок продукции региона»

B1 B2 B3
A1 0,17 0,62 0,24 0.17
A2 3 -1,5 -0,8 -1.5
A3 0,75 0,5 0,175 0,175
3 0.62 0.24

В данной матрице нет доминируемых или дублирующих стратегий. Нижняя цена игры равна 0,175, а верхняя цена игры равна 0,24. Нижняя цена игры не равна верхней. Поэтому решения в чистых стратегиях не существует и для каждого из игроков необходимо найти оптимальную смешанную стратегию.

Решение задачи

1. В данной матрице имеются отрицательные коэффициенты. Для соблюдения условия неотрицательности в задачах линейного программирования прибавим к каждому коэффициенту матрицы модуль минимального отрицательного коэффициента. В данной задаче к каждому коэффициенту матрицы необходимо прибавить число 1,5 – значение модуля наименьшего отрицательного элемента матрицы. Получим платёжную матрицу, преобразованную для выполнения условия неотрицательности

Платёжная матрица, преобразованная для выполнения условия неотрицательности

B1 B2 B3
A1 1,67 2,12 1,74
A2 4,5 0 0,7
A3 2,25 2 1,675

Общую цель. Однако разные члены коллектива могут быть по-разному информированы об обстановке проведения игры. Выигрыш или проигрыш сторон оценивается численно, другие случаи в теории игр не рассматриваются, хотя не всякий выигрыш в действительности можно оценить количественно. Игрок - одна из сторон в игровой ситуации. Стратегия игрока - его правила действия в каждой из возможных ситуаций игры. ...