Вероятность события равна отношению. Статистическое определение вероятности. Условная вероятность события

Классическое и статистическое определение вероятности

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

Хотите узнать, какие математические шансы на успех вашей ставки? Тогда для вас есть две хорошие новости. Первая: чтобы посчитать проходимость, не нужно проводить сложные расчеты и тратить большое количество времени. Достаточно воспользоваться простыми формулами, работа с которыми займёт пару минут. Вторая: после прочтения этой статьи вы с лёгкостью сможете рассчитывать вероятность прохода любой вашей сделки.

Чтобы верно определить проходимость, нужно сделать три шага:

  • Рассчитать процент вероятности исхода события по мнению букмекерской конторы;
  • Вычислить вероятность по статистическим данным самостоятельно;
  • Узнать ценность ставки, учитывая обе вероятности.

Рассмотрим подробно каждый из шагов, применяя не только формулы, но и примеры.

Быстрый переход

Подсчёт вероятности, заложенной в букмекерские коэффициенты

Первый шаг – необходимо узнать, с какой вероятностью оценивает шансы на тот или иной исход сам букмекер. Ведь понятно, что кэфы букмекерские конторы не ставят просто так. Для этого пользуемся следующей формулой:

P Б =(1/K)*100%,

где P Б – вероятность исхода по мнению букмекерской конторы;

K – коэффициент БК на исход.

Допустим, на победу лондонского Арсенала в поединке против Баварии коэффициент 4. Это значит, что вероятность его виктории БК расценивают как (1/4)*100%=25%. Или же Джокович играет против Южного. На победу Новака множитель 1.2, его шансы равны (1/1.2)*100%=83%.

Так оценивает шансы на успех каждого игрока и команды сама БК. Осуществив первый шаг, переходим ко второму.

Расчёт вероятности события игроком

Второй пункт нашего плана – собственная оценка вероятности события. Так как мы не можем учесть математически такие параметры как мотивация, игровой тонус, то воспользуемся упрощённой моделью и будем пользоваться только статистикой предыдущих встреч. Для расчёта статистической вероятности исхода применяем формулу:

P И =(УМ/М)*100%,

где P И – вероятность события по мнению игрока;

УМ – количество успешных матчей, в которых такое событие происходило;

М – общее количество матчей.

Чтобы было понятней, приведём примеры. Энди Маррей и Рафаэль Надаль сыграли между собой 14 матчей. В 6 из них был зафиксирован тотал меньше 21 по геймам, в 8 – тотал больше. Необходимо узнать вероятность того, что следующий поединок будет сыгран на тотал больше: (8/14)*100=57%. Валенсия сыграла на Месталье против Атлетико 74 матча, в которых одержала 29 побед. Вероятность победы Валенсии: (29/74)*100%=39%.

И это все мы узнаем только благодаря статистике предыдущих игр! Естественно, что на какую-то новую команду или игрока такую вероятность просчитать не получится, поэтому такая стратегия ставок подойдет только для матчей, в которых соперники встречаются не первый раз. Теперь мы умеем определять букмекерскую и собственную вероятности исходов, и у нас есть все знания, чтобы перейти к последнему шагу.

Определение ценности ставки

Ценность (валуйность) пари и проходимость имеют непосредственную связь: чем выше валуйность, тем выше шанс на проход. Рассчитывается ценность следующим образом:

V= P И *K-100%,

где V – ценность;

P И – вероятность исхода по мнению беттера;

K – коэффициент БК на исход.

Допустим, мы хотим поставить на победу Милана в матче против Ромы и подчитали, что вероятность победы «красно-черных» 45%. Букмекер предлагает нам на это исход коэффициент 2.5. Будет ли такое пари ценным? Проводим расчёты: V=45%*2.5-100%=12.5%. Отлично, перед нами ценная ставка с хорошими шансами на проход.

Возьмём другой случай. Мария Шарапова играет против Петры Квитовой. Мы хотим заключить сделку на победу Марии, вероятность которой по нашим расчетам 60%. Конторы предлагают на этот исход множитель 1.5. Определяем валуйность: V=60%*1.5-100=-10%. Как видим, ценности эта ставка не представляет и от неё следует воздержаться.

Ясно, что каждое событие обладает той или иной степенью возможности своего наступления (своей реализации). Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определенное число, которое тем больше, чем более возможно событие. Такое число называется вероятностью события.

Вероятность события – есть численная мера степени объективной возможности наступления этого события.

Рассмотрим стохастический эксперимент и случайное событие А, наблюдаемое в этом эксперименте. Повторим этот эксперимент n раз и пусть m(A) – число экспериментов, в которых событие А произошло.

Отношение (1.1)

называется относительной частотой события А в проведенной серии экспериментов.

Легко убедиться в справедливости свойств:

если А и В несовместны (АВ= ), то ν(А+В) = ν(А) + ν(В) (1.2)

Относительная частота определяется только после проведения серии экспериментов и, вообще говоря, может меняться от серии к серии. Однако опыт показывает, что во многих случаях при увеличении числа опытов относительная частота приближается к некоторому числу. Этот факт устойчивости относительной частоты неоднократно проверялся и может считаться экспериментально установленным.

Пример 1.19. . Если бросить одну монету, никто не сможет предсказать, какой стороной она упадет кверху. Но если бросить две тонны монет, то каждый скажет, что примерно одна тонна упадет кверху гербом, то есть относительная частота выпадения герба примерно равна 0,5.

Если при увеличении числа опытов относительная частота события ν(А) стремится к некоторому фиксированному числу, то говорят, что событие А статистически устойчиво , а это число называют вероятностью события А.

Вероятностью события А называется некоторое фиксированное число Р(А), к которому стремится относительная частота ν(А) этого события при увеличении числа опытов, то есть,

Это определение называют статистическим определением вероятности .

Рассмотрим некий стохастический эксперимент и пусть пространство его элементарных событий состоит из конечного или бесконечного (но счетного) множества элементарных событий ω 1 , ω 2 , …, ω i , … . предположим, что каждому элементарному событию ω i прописан некоторое число - р i , характеризующее степень возможности появления данного элементарного события и удовлетворяющее следующим свойствам:

Такое число p i называется вероятностью элементарного события ω i .

Пусть теперь А- случайное событие, наблюдаемое в этом опыте, и ему соответствует некоторое множество

В такой постановке вероятностью события А называют сумму вероятностей элементарных событий, благоприятствующих А (входящих в соответствующее множество А):


(1.4)

Введенная таким образом вероятность обладает теми же свойствами, что и относительная частота, а именно:

И если АВ= (А и В несовместны),

то P(А+В) = P(А) + P(В)

Действительно, согласно (1.4)

В последнем соотношении мы воспользовались тем, что ни одно элементарное событие не может благоприятствовать одновременно двум несовместным событиям.

Особо отметим, что теория вероятностей не указывает способов определения р i , их надо искать из соображений практического характера или получать из соответствующего статистического эксперимента.

В качестве примера рассмотрим классическую схему теории вероятностей. Для этого рассмотрим стохастический эксперимент, пространство элементарных событий которого состоит из конечного (n) числа элементов. Предположим дополнительно, что все эти элементарные события равновозможны, то есть вероятности элементарных событий равны p(ω i)=p i =p. Отсюда следует, что

Пример 1.20 . При бросании симметричной монеты выпадение герба и «решки» равновозможны, их вероятности равны 0,5.

Пример 1.21 . При бросании симметричного кубика все грани равновозможны, их вероятности равны 1/6.

Пусть теперь событию А благоприятствует m элементарных событий, их обычно называют исходами, благоприятствующими событию А . Тогда

Получили классическое определение вероятности : вероятность Р(А) события А равна отношению числа исходов, благоприятствующих событию А, к общему числу исходов

Пример 1.22 . В урне лежит m белых шаров и n черных. Чему равна вероятность вытащить белый шар?

Решение . Всего элементарных событий m+n. Они все равновероятны. Благоприятствующих событию А из них m. Следовательно, .

Из определения вероятности вытекают следующие ее свойства:

Свойство 1 . Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует собы­тию. В этом случае т=п, следовательно,

P(A)=m/n=n/n=1. (1.6)

Свойство 2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае т = 0, следовательно, P(A)=m/n=0/n=0. (1.7)

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испы­тания. То есть, 0≤m≤n, значит, 0≤m/n≤1, следовательно, вероятность любого события удовлетворяет двойному неравенству 0≤P(A) 1. (1.8)

Сопоставляя определения вероятности (1.5) и относительной частоты (1.1), заключаем: определение вероятности не требует, чтобы испытания производились в действительности; определение же относительной частоты предполагает, что испытания были произведены фактически . Другими словами, вероятность вычисляют до опыта, а относительную частоту - после опыта.

Однако, вычисление вероятности требует наличия предварительной информации о количестве или вероятностях благоприятствующих данному событию элементарных исходов. В случае отсутствия такой предварительной информации для определения вероятности прибегают к эмпирическим данным, то есть, по результатам стохастического эксперимента определяют относительную частоту события.

Пример 1.23 . Отдел технического контроля обнаружил 3 нестандартных детали в партии из 80 случайно отобранных деталей. Относительная частота появления нестандартных деталей r (А) = 3/80.

Пример 1.24 . По цели.произвели 24 выстрела, причем было зарегистрировано 19 попаданий. Относительная частота поражения цели. r (А) =19/24.

Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свойство состоит в том, что в различных опытах относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа. Оказалось, что это постоянное число можно принять за приближенное значение вероятности.

Подробнее и точнее связь между относительной частотой и вероятностью будет изложена далее. Теперь же проиллюстрируем свойство устойчивости на примерах.

Пример 1.25 . По данным шведской статистики, относительная частота рождения девочек за 1935 г. по месяцам характеризуется сле­дующими числами (числа расположены в порядке следования месяцев, начиная с января): 0,486; 0,489; 0,490; 0.471; 0,478; 0,482; 0.462; 0,484; 0,485; 0,491; 0,482; 0,473

Относительная частота колеблется около числа 0,481, которое можно принять за приближеннее значение вероятности рождения девочек.

Заметим, что статистические данные различных стран дают примерно то же значение относительной частоты.

Пример 1.26. Многократно проводились опыты бросания монеты, в которых подсчитывали число появление «герба». Результаты нескольких опытов приведены в таблице.

Вряд ли многие люди задумываются, можно ли просчитать события, которые в той или иной мере случайны. Выражаясь простыми словами, реально ли узнать, какая сторона кубика в выпадет в следующий раз. Именно этим вопросом задались два великих ученых, положившие начало такой науке, как теория вероятности, вероятность события в которой изучается достаточно обширно.

Зарождение

Если попытаться дать определение такому понятию, как теория вероятности, то получится следующее: это один из разделов математики, который занимается изучением постоянства случайных событий. Ясное дело, данное понятие толком не раскрывает всю суть, поэтому необходимо рассмотреть ее более детально.

Хотелось бы начать с создателей теории. Как было выше упомянуто, их было двое, это и Именно они одни из первых попытались с использованием формул и математических вычислений просчитать исход того или иного события. В целом же зачатки этой науки проявлялись еще в средневековье. В то время разные мыслители и ученые пытались проанализировать азартные игры, такие как рулетка, кости и так далее, тем самым установить закономерность и процентное соотношение выпадения того или иного числа. Фундамент же был заложен в семнадцатом столетии именно вышеупомянутыми учеными.

Поначалу их труды нельзя было отнести к великим достижениям в этой области, ведь все, что они сделали, это были попросту эмпирические факты, а опыты ставились наглядно, без использования формул. Со временем получилось добиться больших результатов, которые появились вследствие наблюдения за бросанием костей. Именно этот инструмент помог вывести первые внятные формулы.

Единомышленники

Нельзя не упомянуть о таком человеке, как Христиан Гюйгенс, в процессе изучения темы, носящей название "теория вероятности" (вероятность события освещается именно в этой науке). Данная персона очень интересна. Он, так же как и представленные выше ученые, пытался в виде математических формул вывести закономерность случайных событий. Примечательно, что делал он это не совместно с Паскалем и Ферма, то есть все его труды никак не пересекались с этими умами. Гюйгенс вывел

Интересен тот факт, что его работа вышла задолго до результатов трудов первооткрывателей, а точнее, на двадцать лет раньше. Среди обозначенных понятий известнее всего стали:

  • понятие вероятности как величины шанса;
  • математическое ожидание для дискретных случаев;
  • теоремы умножения и сложения вероятностей.

Также нельзя не вспомнить который тоже внес весомый вклад в изучении проблемы. Проводя свои, ни от кого не зависящие испытания, он сумел представить доказательство закона больших чисел. В свою очередь, ученые Пуассон и Лаплас, которые работали в начале девятнадцатого столетия, смогли доказать изначальные теоремы. Именно с этого момента для анализа ошибок в ходе наблюдений начали использовать теорию вероятностей. Стороной обойти данную науку не смогли и русские ученые, а точнее Марков, Чебышев и Дяпунов. Они, исходя из проделанной работы великих гениев, закрепили данный предмет в качестве раздела математики. Трудились эти деятели уже в конце девятнадцатого столетия, и благодаря их вкладу, были доказаны такие явления, как:

  • закон больших чисел;
  • теория цепей Маркова;
  • центральная предельная теорема.

Итак, с историей зарождения науки и с основными персонами, повлиявшими на нее, все более или менее понятно. Сейчас же пришло время конкретизировать все факты.

Основные понятия

Перед тем как касаться законов и теорем, стоит изучить основные понятия теории вероятностей. Событие в ней занимает главенствующую роль. Данная тема довольно объемная, но без нее не удастся разобраться во всем остальном.

Событие в теории вероятности - этолюбая совокупность исходов проведенного опыта. Понятий данного явления существует не так мало. Так, ученый Лотман, работающий в этой области, высказался, что в данном случае речь идет о том, что «произошло, хотя могло и не произойти».

Случайные события (теория вероятности уделяет им особое внимание) - это понятие, которое подразумевает абсолютно любое явление, имеющее возможность произойти. Или же, наоборот, этот сценарий может не случиться при выполнении множества условий. Также стоит знать, что захватывают весь объем произошедших явлений именно случайные события. Теория вероятности указывает на то, что все условия могут повторяться постоянно. Именно их проведение получило название "опыт" или же "испытание".

Достоверное событие - это то явление, которое в данном испытании на сто процентов произойдет. Соответственно, невозможное событие - это то, которое не случится.

Совмещение пары действий (условно случай A и случай B) есть явление, которое происходит одновременно. Они обозначаются как AB.

Сумма пар событий А и В - это С, другими словами, если хотя бы одно из них произойдет (А или В), то получится С. Формула описываемого явления записывается так: С = А + В.

Несовместные события в теории вероятности подразумевают, что два случая взаимно исключают друг друга. Одновременно они ни в коем случае не могут произойти. Совместные события в теории вероятности - это их антипод. Здесь подразумевается, что если произошло А, то оно никак не препятствует В.

Противоположные события (теория вероятности рассматривает их очень подробно) просты для понимания. Лучше всего разобраться с ними в сравнении. Они почти такие же, как и несовместные события в теории вероятности. Но их отличие заключается в том, что одно из множества явлений в любом случае должно произойти.

Равновозможные события - это те действия, возможность повтора которых равна. Чтобы было понятней, можно представить бросание монеты: выпадение одной из ее сторон равновероятно выпадению другой.

Благоприятствующее событие легче рассмотреть на примере. Допустим, есть эпизод В и эпизод А. Первое - это бросок игрального кубика с появлением нечетного числа, а второе - появление числа пять на кубике. Тогда получается, что А благоприятствует В.

Независимые события в теории вероятности проецируются только на два и больше случаев и подразумевают независимость какого-либо действия от другого. Например, А - выпадение решки при бросании монеты, а В - доставание валета из колоды. Они и есть независимые события в теории вероятности. С этим моментом стало понятнее.

Зависимые события в теории вероятности также допустимы лишь для их множества. Они подразумевают зависимость одного от другого, то есть явление В может произойти только в том случае, если А уже произошло или же, наоборот, не произошло, когда это - главное условие для В.

Исход случайного эксперимента, состоящего из одного компонента, - это элементарные события. Теория вероятности поясняет, что это такое явление, которое совершилось лишь единожды.

Основные формулы

Итак, выше были рассмотрены понятия "событие", "теория вероятности", определение основным терминам этой науки также было дано. Сейчас же пришло время ознакомиться непосредственно с важными формулами. Эти выражения математически подтверждают все главные понятия в таком непростом предмете, как теория вероятности. Вероятность события и здесь играет огромную роль.

Начать лучше с основных И перед тем как приступить к ним, стоит рассмотреть, что это такое.

Комбинаторика - это в первую очередь раздел математики, он занимается изучением огромного количества целых чисел, а также различных перестановок как самих чисел, так и их элементов, различных данных и т. п., ведущих к появлению ряда комбинаций. Помимо теории вероятности, эта отрасль важна для статистики, компьютерной науки и криптографии.

Итак, теперь можно переходить к представлению самих формул и их определению.

Первой из них будет выражение для числа перестановок, выглядит оно следующим образом:

P_n = n ⋅ (n - 1) ⋅ (n - 2)…3 ⋅ 2 ⋅ 1 = n!

Применяется уравнение только в том случае, если элементы различаются лишь порядком расположения.

Теперь будет рассмотрена формула размещения, выглядит она так:

A_n^m = n ⋅ (n - 1) ⋅ (n-2) ⋅ ... ⋅ (n - m + 1) = n! : (n - m)!

Это выражение применимо уже не только лишь к порядку размещения элемента, но и к его составу.

Третье уравнение из комбинаторики, и оно же последнее, называется формулой для числа сочетаний:

C_n^m = n ! : ((n - m))! : m !

Сочетанием называются выборки, которые не упорядочены, соответственно, к ним и применяется данное правило.

С формулами комбинаторики получилось разобраться без труда, теперь можно перейти к классическому определению вероятностей. Выглядит это выражение следующим образом:

В данной формуле m - это число условий, благоприятствующих событию A, а n - число абсолютно всех равновозможных и элементарных исходов.

Существует большое количество выражений, в статье не будут рассмотрены все, но затронуты будут самые важные из них такие, как, например, вероятность суммы событий:

P(A + B) = P(A) + P(B) - эта теорема для сложения только несовместных событий;

P(A + B) = P(A) + P(B) - P(AB) - а эта для сложения только совместимых.

Вероятность произведения событий:

P(A ⋅ B) = P(A) ⋅ P(B) - эта теорема для независимых событий;

(P(A ⋅ B) = P(A) ⋅ P(B∣A); P(A ⋅ B) = P(A) ⋅ P(A∣B)) - а эта для зависимых.

Закончит список формула событий. Теория вероятностей рассказывает нам о теоремеБайеса, которая выглядит так:

P(H_m∣A) = (P(H_m)P(A∣H_m)) : (∑_(k=1)^n P(H_k)P(A∣H_k)),m = 1,...,n

В данной формуле H 1 , H 2 , …, H n - это полная группа гипотез.

Примеры

Если тщательно изучить любой раздел математики, в нем не обходится без упражнений и образцов решений. Так и теория вероятности: события, примеры здесь являются неотъемлемым компонентом, подтверждающим научные выкладки.

Формула для числа перестановок

Допустим, в карточной колоде есть тридцать карт, начиная с номинала один. Далее вопрос. Сколько есть способов сложить колоду так, чтобы карты с номиналом один и два не были расположены рядом?

Задача поставлена, теперь давайте перейдем к ее решению. Для начала нужно определить число перестановок из тридцати элементов, для этого берем представленную выше формулу, получается P_30 = 30!.

Исходя из этого правила, мы узнаем, сколько есть вариантов сложить колоду по-разному, но нам необходимо вычесть из них те, в которых первая и вторая карта будут рядом. Для этого начнем с варианта, когда первая находится над второй. Получается, что первая карта может занять двадцать девять мест - с первого по двадцать девятое, а вторая карта со второго по тридцатое, получается всего двадцать девять мест для пары карт. В свою очередь, остальные могут принимать двадцать восемь мест, причем в произвольном порядке. То есть для перестановки двадцати восьми карт есть двадцать восемь вариантов P_28 = 28!

В итоге получается, что если рассматривать решение, когда первая карта находится над второй, лишних возможностей получится 29 ⋅ 28! = 29!

Используя этот же метод, нужно вычислить число избыточных вариантов для того случая, когда первая карта находится под второй. Получается также 29 ⋅ 28! = 29!

Из этого следует, что лишних вариантов 2 ⋅ 29!, в то время как необходимых способов сбора колоды 30! - 2 ⋅ 29!. Остается только лишь посчитать.

30! = 29! ⋅ 30; 30!- 2 ⋅ 29! = 29! ⋅ (30 - 2) = 29! ⋅ 28

Теперь нужно перемножать между собой все числа от одного до двадцати девяти, после чего в конце умножить все на 28. Ответ получается 2,4757335 ⋅〖10〗^32

Решение примера. Формула для числа размещения

В данной задаче необходимо выяснить, сколько есть способов, чтобы поставить пятнадцать томов на одной полке, но при условии, что всего томов тридцать.

В этой задаче решение немного проще, чем в предыдущей. Используя уже известную формулу, необходимо вычислить суммарное число расположений из тридцати томов по пятнадцать.

A_30^15 = 30 ⋅ 29 ⋅ 28⋅... ⋅ (30 - 15 + 1) = 30 ⋅ 29 ⋅ 28 ⋅ ... ⋅ 16 = 202 843 204 931 727 360 000

Ответ, соответственно, будет равен 202 843 204 931 727 360 000.

Теперь возьмем задачу чуть сложнее. Необходимо узнать, сколько есть способов расставить тридцать книг на двух книжных полках, при условии, что на одной полке могут находиться лишь пятнадцать томов.

Перед началом решения хотелось бы уточнить, что некоторые задачи решаются несколькими путями, так и в этой есть два способа, но в обоих применена одна и та же формула.

В этой задаче можно взять ответ из предыдущей, ведь там мы вычислили, сколько раз можно заполнить полку на пятнадцать книг по-разному. Получилось A_30^15 = 30 ⋅ 29 ⋅ 28 ⋅ ... ⋅ (30 - 15 + 1) = 30 ⋅ 29 ⋅ 28 ⋅ ...⋅ 16.

Вторую же полку рассчитаем по формуле перестановки, ведь в нее помещается пятнадцать книг, в то время как всего остается пятнадцать. Используем формулу P_15 = 15!.

Получается, что в сумме будет A_30^15 ⋅ P_15 способов, но, помимо этого, произведение всех чисел от тридцати до шестнадцати надо будет умножить на произведение чисел от одного до пятнадцати, в итоге получится произведение всех чисел от одного до тридцати, то есть ответ равен 30!

Но эту задачу можно решить и по-иному - проще. Для этого можно представить, что есть одна полка на тридцать книг. Все они расставлены на этой плоскости, но так как условие требует, чтобы полок было две, то мы одну длинную пилим пополам, получается две по пятнадцать. Из этого получается что вариантов расстановки может быть P_30 = 30!.

Решение примера. Формула для числа сочетания

Сейчас будет рассмотрен вариант третьей задачи из комбинаторики. Необходимо узнать, сколько способов есть, чтобы расставить пятнадцать книг при условии, что выбирать необходимо из тридцати абсолютно одинаковых.

Для решения будет, конечно же, применена формула для числа сочетаний. Из условия становится понятным, что порядок одинаковых пятнадцати книг не важен. Поэтому изначально нужно выяснить общее число сочетаний из тридцати книг по пятнадцать.

C_30^15 = 30 ! : ((30-15)) ! : 15 ! = 155 117 520

Вот и все. Используя данную формулу, в кратчайшее время удалось решить такую задачу, ответ, соответственно, равен 155 117 520.

Решение примера. Классическое определение вероятности

С помощью формулы, указанной выше, можно найти ответ в несложной задаче. Но это поможет наглядно увидеть и проследить ход действий.

В задаче дано, что в урне есть десять абсолютно одинаковых шариков. Из них четыре желтых и шесть синих. Из урны берется один шарик. Необходимо узнать вероятность доставания синего.

Для решения задачи необходимо обозначить доставание синего шарика событием А. Данный опыт может иметь десять исходов, которые, в свою очередь, элементарные и равновозможные. В то же время из десяти шесть являются благоприятствующими событию А. Решаем по формуле:

P(A) = 6: 10 = 0,6

Применив эту формулу, мы узнали, что возможность доставания синего шарика равна 0,6.

Решение примера. Вероятность суммы событий

Сейчас будет представлен вариант, который решается с использованием формулы вероятности суммы событий. Итак, в условии дано, что есть два ящика, в первом находится один серый и пять белых шариков, а во втором - восемь серых и четыре белых шара. В итоге из первого и второго короба взяли по одному из них. Необходимо узнать, каков шанс того, что доставаемые шарики будут серого и белого цвета.

Чтобы решить данную задачу, необходимо обозначить события.

  • Итак, А - взяли серый шарик из первого ящика: P(A) = 1/6.
  • А’ - взяли белый шарик также из первого ящика: P(A") = 5/6.
  • В - извлекли серый шарик уже из второго короба: P(B) = 2/3.
  • В’ - взяли серый шарик из второго ящика: P(B") = 1/3.

По условию задачи необходимо, чтобы случилось одно из явлений: АВ’ или же А’В. Используя формулу, получаем: P(AB") = 1/18, P(A"B) = 10/18.

Сейчас была использована формула по умножению вероятности. Далее, чтобы узнать ответ, необходимо применить уравнение их сложения:

P = P(AB" + A"B) = P(AB") + P(A"B) = 11/18.

Вот так, используя формулу, можно решать подобные задачи.

Итог

В статье была представлена информация по теме "Теория вероятности", вероятность события в которой играет важнейшую роль. Конечно же, не все было учтено, но, исходя из представленного текста, можно теоретически ознакомиться с данным разделом математики. Рассматриваемая наука может пригодиться не только в профессиональном деле, но и в повседневной жизни. С ее помощью можно просчитать любую возможность какого-либо события.

В тексте были затронуты также знаменательные даты в истории становления теории вероятности как науки, и фамилии людей, чьи труды были в нее вложены. Вот так человеческое любопытство привело к тому, что люди научились просчитывать даже случайные события. Когда-то они просто заинтересовались этим, а сегодня об этом уже знают все. И никто не скажет, что ждет нас в будущем, какие еще гениальные открытия, связанные с рассматриваемой теорией, будут совершены. Но одно можно сказать точно - исследования на месте не стоят!

"Случайности не случайны"... Звучит так, словно сказал философ, но на деле изучать случайности удел великой науки математики. В математике случайностями занимается теория вероятности. Формулы и примеры заданий, а также основные определения этой науки будут представлены в статье.

Что такое теория вероятности?

Теория вероятности - это одна из математических дисциплин, которая изучает случайные события.

Чтобы было немного понятнее, приведем небольшой пример: если подкинуть вверх монету, она может упасть «орлом» или «решкой». Пока монета находится в воздухе, обе эти вероятности возможны. То есть вероятность возможных последствий соотносится 1:1. Если из колоды с 36-ю картами вытащить одну, тогда вероятность будет обозначаться как 1:36. Казалось бы, что здесь нечего исследовать и предугадывать, тем более при помощи математических формул. Тем не менее, если повторять определенное действие много раз, то можно выявить некую закономерность и на ее основе спрогнозировать исход событий в других условиях.

Если обобщить все вышесказанное, теория вероятности в классическом понимании изучает возможность возникновения одного из возможных событий в числовом значении.

Со страниц истории

Теория вероятности, формулы и примеры первых заданий появились еще в далеком Средневековье, когда впервые возникли попытки спрогнозировать исход карточных игр.

Изначально теория вероятности не имела ничего общего с математикой. Она обосновывалась эмпирическими фактами или свойствами события, которое можно было воспроизвести на практике. Первые работы в этой сфере как в математической дисциплине появились в XVII веке. Родоначальниками стали Блез Паскаль и Пьер Ферма. Длительное время они изучали азартные игры и увидели определенные закономерности, о которых и решили рассказать обществу.

Такую же методику изобрел Христиан Гюйгенс, хотя он не был знаком с результатами исследований Паскаля и Ферма. Понятие «теория вероятности», формулы и примеры, что считаются первыми в истории дисциплины, были введены именно им.

Немаловажное значение имеют и работы Якоба Бернулли, теоремы Лапласа и Пуассона. Они сделали теорию вероятности больше похожей на математическую дисциплину. Свой теперешний вид теория вероятностей, формулы и примеры основных заданий получили благодаря аксиомам Колмогорова. В результате всех изменений теория вероятности стала одним из математических разделов.

Базовые понятия теории вероятностей. События

Главным понятием этой дисциплины является "событие". События бывают трех видов:

  • Достоверные. Те, которые произойдут в любом случае (монета упадет).
  • Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе).
  • Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т. д.

Все события в примерах обозначаются заглавными латинскими буквами, за исключением Р, которой отведена другая роль. Например:

  • А = «студенты пришли на лекцию».
  • Ā = «студенты не пришли на лекцию».

В практических заданиях события принято записывать словами.

Одна из важнейших характеристик событий - их равновозможность. То есть, если подбросить монету, все варианты исходного падения возможны, пока она не упала. Но также события бывают и не равновозможными. Это происходит, когда кто-то специально воздействует на исход. Например, «меченые» игральные карты или игральные кости, в которых смещен центр тяжести.

Еще события бывают совместимыми и несовместимыми. Совместимые события не исключают появления друг друга. Например:

  • А = «студентка пришла на лекцию».
  • В = «студент пришел на лекцию».

Эти события независимы друг от друга, и появление одного из них не влияет на появление другого. Несовместимые события определяются тем, что появление одного исключает появление другого. Если говорить о той же монете, то выпадение «решки» делает невозможным появление «орла» в этом же эксперименте.

Действия над событиями

События можно умножать и складывать, соответственно, в дисциплине вводятся логические связки «И» и «ИЛИ».

Сумма определяется тем, что может появиться или событие А, или В, или два одновременно. В случае когда они несовместимы, последний вариант невозможен, выпадет или А, или В.

Умножение событий заключается в появлении А и В одновременно.

Теперь можно привести несколько примеров, чтобы лучше запомнились основы, теория вероятности и формулы. Примеры решения задач далее.

Задание 1 : Фирма принимает участие в конкурсе на получение контрактов на три разновидности работы. Возможные события, которые могут произойти:

  • А = «фирма получит первый контракт».
  • А 1 = «фирма не получит первый контракт».
  • В = «фирма получит второй контракт».
  • В 1 = «фирма не получит второй контракт»
  • С = «фирма получит третий контракт».
  • С 1 = «фирма не получит третий контракт».

С помощью действий над событиями попробуем выразить следующие ситуации:

  • К = «фирма получит все контракты».

В математическом виде уравнение будет иметь следующий вид: К = АВС.

  • М = «фирма не получит ни одного контракта».

М = А 1 В 1 С 1 .

Усложняем задание: H = «фирма получит один контракт». Поскольку не известно, какой именно контракт получит фирма (первый, второй или третий), необходимо записать весь ряд возможных событий:

Н = А 1 ВС 1 υ АВ 1 С 1 υ А 1 В 1 С.

А 1 ВС 1 - это ряд событий, где фирма не получает первый и третий контракт, но получает второй. Соответственным методом записаны и другие возможные события. Символ υ в дисциплине обозначает связку «ИЛИ». Если перевести приведенный пример на человеческий язык, то фирма получит или третий контракт, или второй, или первый. Подобным образом можно записывать и другие условия в дисциплине «Теория вероятности». Формулы и примеры решения задач, представленные выше, помогут сделать это самостоятельно.

Собственно, вероятность

Пожалуй, в этой математической дисциплине вероятность события - это центральное понятие. Существует 3 определения вероятности:

  • классическое;
  • статистическое;
  • геометрическое.

Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так:

  • Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов.

Формула выглядит так: Р(А)=m/n.

А - собственно, событие. Если появляется случай, противоположный А, его можно записывать как Ā или А 1 .

m - количество возможных благоприятных случаев.

n - все события, которые могут произойти.

Например, А = «вытащить карту червовой масти». В стандартной колоде 36 карт, 9 из них червовой масти. Соответственно, формула решения задания будет иметь вид:

Р(А)=9/36=0,25.

В итоге вероятность того, что из колоды вытянут карту червовой масти, составит 0,25.

К высшей математике

Теперь стало немного известно, что такое теория вероятности, формулы и примеры решения заданий, которые попадаются в школьной программе. Однако теория вероятностей встречается и в высшей математике, которая преподается в вузах. Чаще всего там оперируют геометрическими и статистическими определениями теории и сложными формулами.

Очень интересна теория вероятности. Формулы и примеры (высшая математика) лучше начинать изучать с малого - со статистического (или частотного) определения вероятности.

Статистический подход не противоречит классическому, а немного расширяет его. Если в первом случае нужно было определить, с какой долей вероятности произойдет событие, то в этом методе необходимо указать, как часто оно будет происходить. Здесь вводится новое понятие «относительная частота», которую можно обозначить W n (A). Формула ничем не отличается от классической:

Если классическая формула вычисляется для прогнозирования, то статистическая - согласно результатам эксперимента. Возьмем, к примеру, небольшое задание.

Отдел технологического контроля проверяет изделия на качество. Среди 100 изделий нашли 3 некачественных. Как найти вероятность частоты качественного товара?

А = «появление качественного товара».

W n (A)=97/100=0,97

Таким образом, частота качественного товара составляет 0,97. Откуда взяли 97? Из 100 товаров, которые проверили, 3 оказались некачественными. От 100 отнимаем 3, получаем 97, это количество качественного товара.

Немного о комбинаторике

Еще один метод теории вероятности называют комбинаторикой. Его основной принцип состоит в том, что если определенный выбор А можно осуществить m разными способами, а выбор В - n разными способами, то выбор А и В можно осуществить путем умножения.

Например, из города А в город В ведет 5 дорог. Из города В в город С ведет 4 пути. Сколькими способами можно доехать из города А в город С?

Все просто: 5х4=20, то есть двадцатью разными способами можно добраться из точки А в точку С.

Усложним задание. Сколько существует способов раскладывания карт в пасьянсе? В колоде 36 карт - это исходная точка. Чтобы узнать количество способов, нужно от исходной точки «отнимать» по одной карте и умножать.

То есть 36х35х34х33х32…х2х1= результат не вмещается на экран калькулятора, поэтому его можно просто обозначить 36!. Знак «!» возле числа указывает на то, что весь ряд чисел перемножается между собой.

В комбинаторике присутствуют такие понятия, как перестановка, размещение и сочетание. Каждое из них имеет свою формулу.

Упорядоченный набор элементов множества называют размещением. Размещения могут быть с повторениями, то есть один элемент можно использовать несколько раз. И без повторений, когда элементы не повторяются. n - это все элементы, m - элементы, которые участвуют в размещении. Формула для размещения без повторений будет иметь вид:

A n m =n!/(n-m)!

Соединения из n элементов, которые отличаются только порядком размещения, называют перестановкой. В математике это имеет вид: Р n = n!

Сочетаниями из n элементов по m называют такие соединения, в которых важно, какие это были элементы и каково их общее количество. Формула будет иметь вид:

A n m =n!/m!(n-m)!

Формула Бернулли

В теории вероятности, так же как и в каждой дисциплине, имеются труды выдающихся в своей области исследователей, которые вывели ее на новый уровень. Один из таких трудов - формула Бернулли, что позволяет определять вероятность появления определенного события при независимых условиях. Это говорит о том, что появление А в эксперименте не зависит от появления или не появления того же события в ранее проведенных или последующих испытаниях.

Уравнение Бернулли:

P n (m) = C n m ×p m ×q n-m .

Вероятность (р) появления события (А) неизменна для каждого испытания. Вероятность того, что ситуация произойдет ровно m раз в n количестве экспериментов, будет вычисляться формулой, что представлена выше. Соответственно, возникает вопрос о том, как узнать число q.

Если событие А наступает р количество раз, соответственно, оно может и не наступить. Единица - это число, которым принято обозначать все исходы ситуации в дисциплине. Поэтому q - число, которое обозначает возможность ненаступления события.

Теперь вам известна формула Бернулли (теория вероятности). Примеры решения задач (первый уровень) рассмотрим далее.

Задание 2: Посетитель магазина сделает покупку с вероятностью 0,2. В магазин зашли независимым образом 6 посетителей. Какова вероятность того, что посетитель сделает покупку?

Решение: Поскольку неизвестно, сколько посетителей должны сделать покупку, один или все шесть, необходимо просчитать все возможные вероятности, пользуясь формулой Бернулли.

А = «посетитель совершит покупку».

В этом случае: р = 0,2 (как указано в задании). Соответственно, q=1-0,2 = 0,8.

n = 6 (поскольку в магазине 6 посетителей). Число m будет меняться от 0 (ни один покупатель не совершит покупку) до 6 (все посетители магазина что-то приобретут). В итоге получим решение:

P 6 (0) = C 0 6 ×p 0 ×q 6 =q 6 = (0,8) 6 = 0,2621.

Ни один из покупателей не совершит покупку с вероятностью 0,2621.

Как еще используется формула Бернулли (теория вероятности)? Примеры решения задач (второй уровень) далее.

После вышеприведенного примера возникают вопросы о том, куда делись С и р. Относительно р число в степени 0 будет равно единице. Что касается С, то его можно найти формулой:

C n m = n! / m!(n-m)!

Поскольку в первом примере m = 0, соответственно, С=1, что в принципе не влияет на результат. Используя новую формулу, попробуем узнать, какова вероятность покупки товаров двумя посетителями.

P 6 (2) = C 6 2 ×p 2 ×q 4 = (6×5×4×3×2×1) / (2×1×4×3×2×1) × (0,2) 2 × (0,8) 4 = 15 × 0,04 × 0,4096 = 0,246.

Не так уж и сложна теория вероятности. Формула Бернулли, примеры которой представлены выше, прямое тому доказательство.

Формула Пуассона

Уравнение Пуассона используется для вычисления маловероятных случайных ситуаций.

Основная формула:

P n (m)=λ m /m! × e (-λ) .

При этом λ = n х p. Вот такая несложная формула Пуассона (теория вероятности). Примеры решения задач рассмотрим далее.

Задание 3 : На заводе изготовили детали в количестве 100000 штук. Появление бракованной детали = 0,0001. Какова вероятность, что в партии будет 5 бракованных деталей?

Как видим, брак - это маловероятное событие, в связи с чем для вычисления используется формула Пуассона (теория вероятности). Примеры решения задач подобного рода ничем не отличаются от других заданий дисциплины, в приведенную формулу подставляем необходимые данные:

А = «случайно выбранная деталь будет бракованной».

р = 0,0001 (согласно условию задания).

n = 100000 (количество деталей).

m = 5 (бракованные детали). Подставляем данные в формулу и получаем:

Р 100000 (5) = 10 5 /5! Х е -10 = 0,0375.

Так же как и формула Бернулли (теория вероятности), примеры решений с помощью которой написаны выше, уравнение Пуассона имеет неизвестное е. По сути его можно найти формулой:

е -λ = lim n ->∞ (1-λ/n) n .

Однако есть специальные таблицы, в которых находятся практически все значения е.

Теорема Муавра-Лапласа

Если в схеме Бернулли количество испытаний достаточно велико, а вероятность появления события А во всех схемах одинакова, то вероятность появления события А определенное количество раз в серии испытаний можно найти формулой Лапласа:

Р n (m)= 1/√npq x ϕ(X m).

X m = m-np/√npq.

Чтобы лучше запомнилась формула Лапласа (теория вероятности), примеры задач в помощь ниже.

Сначала найдем X m , подставляем данные (они все указаны выше) в формулу и получим 0,025. При помощи таблиц находим число ϕ(0,025), значение которого 0,3988. Теперь можно подставлять все данные в формулу:

Р 800 (267) = 1/√(800 х 1/3 х 2/3) х 0,3988 = 3/40 х 0,3988 = 0,03.

Таким образом, вероятность того, что рекламная листовка сработает ровно 267 раз, составляет 0,03.

Формула Байеса

Формула Байеса (теория вероятности), примеры решения заданий с помощью которой будут приведены ниже, представляет собой уравнение, которое описывает вероятность события, опираясь на обстоятельства, которые могли быть связаны с ним. Основная формула имеет следующий вид:

Р (А|B) = Р (В|А) х Р (А) / Р (В).

А и В являются определенными событиями.

Р(А|B) - условная вероятность, то есть может произойти событие А при условии, что событие В истинно.

Р (В|А) - условная вероятность события В.

Итак, заключительная часть небольшого курса «Теория вероятности» - формула Байеса, примеры решений задач с которой ниже.

Задание 5 : На склад привезли телефоны от трех компаний. При этом часть телефонов, которые изготавливаются на первом заводе, составляет 25%, на втором - 60%, на третьем - 15%. Известно также, что средний процент бракованных изделий у первой фабрики составляет 2%, у второй - 4%, и у третьей - 1%. Необходимо найти вероятность того, что случайно выбранный телефон окажется бракованным.

А = «случайно взятый телефон».

В 1 - телефон, который изготовила первая фабрика. Соответственно, появятся вводные В 2 и В 3 (для второй и третьей фабрик).

В итоге получим:

Р (В 1) = 25%/100% = 0,25; Р(В 2) = 0,6; Р (В 3) = 0,15 - таким образом мы нашли вероятность каждого варианта.

Теперь нужно найти условные вероятности искомого события, то есть вероятность бракованной продукции в фирмах:

Р (А/В 1) = 2%/100% = 0,02;

Р(А/В 2) = 0,04;

Р (А/В 3) = 0,01.

Теперь подставим данные в формулу Байеса и получим:

Р (А) = 0,25 х 0,2 + 0,6 х 0,4 + 0,15 х 0,01= 0,0305.

В статье представлена теория вероятности, формулы и примеры решения задач, но это только вершина айсберга обширной дисциплины. И после всего написанного логично будет задаться вопросом о том, нужна ли теория вероятности в жизни. Простому человеку сложно ответить, лучше спросить об этом у того, кто с ее помощью не единожды срывал джек-пот.